性别:女
职称:教授
邮编:450046
通信地址:河南省郑州市郑东新区平安大道218号,河南农业大学生命科学学院
联系电话:0371-68555260
邮箱地址:
1985/09-1989/07,山东大学,微生物工程专业,学士
1989/07-至今,河南农业大学,教师
1996/09-1999/07,河南农业大学,微生物学专业,硕士
2001/09-2005/07,南京农业大学,微生物学专业,博士
2010/10-2011/10,美国弗吉尼亚理工大学,访问学者
主持的科研项目:
(1)国家重点研发计划项目:秸秆制淀粉精准高效多酶催化体系创建及调控机制(2022yfc3401700),2022.11-2027.10
(2)国家自然科学基金项目:黑曲霉胞内β-葡萄糖苷酶bgl1b在木质纤维素降解酶表达调控中的参与机制(32171476),2022.01-2025.12
(3)国家自然科学基金项目:纤维素转淀粉关键酶cbp-pgp底物穿梭复合体的设计与构效关系研究(31571775),2016.01-2019.12
(4)农业部行业专项子课题:北方农作物秸秆饲用化利用技术研究与示范(201503134)子课题,2015.01-2019.12
论文:
[1] yuanyuan zhang; yapeng li; hui lin; guotao mao; xiang long; xinyu liu; hongge chen*. broadening the substrate specificity of cellobiose phosphorylase from clostridium thermocellum for improved transformation of cellodextrin to starch. international journal of molecular sciences, 2023, 24 (19), 14452.
[2] hui lin*, yinyin meng, na li, yanhong tang, shuang dong, zhong-liu wu, cuilian xu, romas kazlauskas*, hongge chen*. enzymatic enantioselective anti-markovnikov hydration of aryl alkenes. angew chem int ed engl, 61 (32), 2022, e202206472.
[3] shuang dong, donglin fan, qian liu, yinyin meng, xinyu liu, sen yang, hui lin*, na li*, hongge chen*. enantioselectivity and key residue of herbaspirillum huttiense monooxygenase in asymmetric epoxidation of styrenes. applied microbiology and biotechnology, 106 (5-6), 2007-2015, 2022.
[4] xinyu liu, huawei hou, yapeng li, sen yang, hui lin, hongge chen*. fusion of cellobiose phosphorylase and potato alpha-glucan phosphorylase facilitates substrate channeling for enzymatic conversion of cellobiose to starch. preparative biochemistry & biotechnology, 2022, 52(6): 611-617.
[5] hongge chen & yi-heng p. job zhang. enzymatic regeneration and conservation of atp: challenges and opportunities. critical reviews in biotechnology, 41 (1): 16-33, 2021.
[6] jun zhao, dingchen shi, sen yang, hui lin & hongge chen*. identification of an intracellular β-glucosidase in aspergillus niger with transglycosylation activity. applied microbiology and biotechnology, 104: 8367–8380, 2020.
[7] hui lin, jun zhao, qingqing zhang, shixiu cui, zhiliang fan, hongge chen*, chaoguang tian*. identification and characterization of a cellodextrin transporter in aspergillus niger. frontiers in microbiology, 11: 145, 2020.
[8] hui lin, yanhong tang, shuang dong, ruibo lang, hongge chen*. a new monooxygenase from herbaspirillum huttiense catalyzed highly enantioselective epoxidation of allylbenzenes and allylic alcohols. catalysis science & technology, 10: 2145-2151, 2020.
[9] dongdong zhu, xinyu liu, xia xie, sen yang, hui lin & hongge chen*. characteristics of a xip-resistant xylanase from neocallimastix sp. gmlf1 and its advantage in barley malt saccharification. international journal of food science and technology, 55: 2152-2160, 2020.
[10] kun cheng, wenming zheng, hongge chen*, yi-heng p. job zhang*. upgrade of wood sugar d-xylose to a value-added nutraceutical by in vitro metabolic engineering. metabolic engineering, 52: 1-8, 2019.
[11] huanan zhu, wei lu, hui lin, zhanglei ju, xinyu liu, hongge chen*. effects of intron retention on properties of β-glucosidase in aspergillus niger. fungal biology, 123: 465-470, 2019.
[12] xinyu liu, yakun zhang, zhaohui wei, hongge chen*, and xincheng jia. molecular cloning and characterizations of xylanase inhibitor protein from wheat (triticum aestivum). journal of food science, 82: 1582-1587, 2017.
[13] wei jia, jie feng, jing-song zhang, chi-chung lin, wen-han wang* & hong-ge chen*. structural characteristics of the novel polysaccharide fvpa1 from winter culinary-medicinal mushroom, flammulina velutipes (agaricomycetes), capable of enhancing natural killer cell activity against k562 tumor cells. international journal of medicinal mushrooms, 19 (6): 535-546, 2017.
[14] yuanyuan wu, guotao mao, haiyan fan, andong song, yi-heng percival zhang & hongge chen*. biochemical properties of gh94 cellodextrin phosphorylase tha_1941 from a thermophilic eubacterium thermosipho africanus tcf52b with cellobiose phosphorylase activity. scientific reports, 7: 4849, 2017.
[15] cui s, wang t, hu h, liu l, song a, chen h*. investigating the expression profiles of f10 and g11 xylanases from aspergillus niger a09 with qpcr. canadian journal of microbiology, 62: 744-752, 2016.
[16] hongge chen, y-h percival zhang. new biorefineries and sustainable agriculture: increased food, biofuels, and ecosystem security. renewable and sustainable energy reviews, 47: 117-132, 2015.
[17] kun cheng, fei zhang, fangfang sun, hongge chen*, y-h percival zhang*. doubling power output of starch biobattery treated by the most thermostable isoamylase from an archaeon sulfolobus tokodaii. scientific reports, 5: 13184, 2015.
[18] xinyu liu, wei jia, yi an, kun cheng, mingdao wang, sen yang, hongge chen*. screening, gene cloning and characterizations of an acid-stable α-amylase. journal of microbiology and biotechnology, 25(6): 828-836, 2015.
[19] you c, chen hg (与you c并列第一), myung s, sathitsuksanoh n, ma h, zhang xz, li j, and y-hp zhang. enzymatic transformation of nonfood biomass to starch. pnas, 110 (18): 7182-7187, 2013.
[20] liu l*, zhang g, zhang z, wang s, and chen h. terminal amino-acids disturb xylanase thermostability and activity. journal of biological chemistry, 286: 44710-44715, 2011.
[21] liu l*, wang l, zhang z, wang s, and chen h. effect of codon message on xylanase thermal activity. journal of biological chemistry, 287(32): 27183-27188, 2012.
[22] hongge chen, liangwei liu, shuai lv, xinyu liu, mingdao wang, andong song, xincheng jia. immobilization of aspergillus niger xylanase on chitosan using dialdehyde starch as a coupling agent. applied biochemistry and biotechnology, 162 (1): 24-32, 2010.
[23] chen h; yan x; liu x; wang m; huang h; jia x; wang j. purification and characterization of novel bifunctional xylanase, xyniii, isolated from aspergillus niger a-25. journal of microbiology and biotechnology, 16(7): 1132-1138, 2006.
[24] liu l*, wang l, zhang z, guo x, li x, chen h. domain-swapping of mesophilic xylanase with hyper-thermophilic glucanase. bmc biotechnology, 12:28, 2012.
[25] 徐轶凡,maria ajma,董飞宇,张震,林晖*,陈红歌*. 黑曲霉木质纤维素降解酶基因的可变剪接分析及验证. 菌物学报, 41 (10): 1619-1633, 2022.
[26] 李亚鹏,徐轶凡,陈红歌*.纤维二糖磷酸化酶和纤维寡糖磷酸化酶的研究与应用. 微生物学通报, 48(6): 2245-2258, 2021.
[27] 杨森, 段旭磊, 裴亚欣, 张海旭, 陈想, 梁婷婷, 宋安东, 陈红歌*. 瞬时弹射式蒸汽爆破对玉米秸秆微贮营养成分和牛瘤胃营养物质消失率的影响. 中国农业大学学报, 26(10): 108-117, 2021.
[28] 刘新育,谢夏,朱东东,陈红歌*. 木聚糖酶与xip型木聚糖酶抑制蛋白相互作用分子机制的研究进展. 微生物学通报, 47 (7): 2300-2308, 2020.
[29] 王岩岩,邢建民,陈红歌*.β-胡萝卜素合成的代谢工程研究进展.生物工程学报, 33(4): 578-590, 2017.
[30] 杨森,李严,麦艳娜,阮润田,宋安东,王风芹,陈红歌*.亮斑扁角水虻卵携带细菌的分离鉴定及其对成虫产卵行为影响. 昆虫学报,60(2): 163-172, 2017.
[31] 刘新育,崔世修,刘艳芳,贾新成,陈红歌*.小麦木聚糖酶抑制蛋白的分离纯化及其性质研究.西北农林科技大学学报(自然科学版), 44(9):195-200, 2016.
[32] 雷高,杨森,夏国庆,陈红歌*. 磷壁酸酶生物学功能及潜在应用. 动物营养学报, 27(5): 1355-1360, 2015.
[33] 刘新育, 李岳桦, 杨国宇, 陈红歌*. f6ppk酶法分析双歧杆菌类产品中双歧杆菌活菌数. 中国食品学报, 14(6): 214-219, 2014.
[34] 陈红歌,张俊丽,刘亮伟,贾新成. 木聚糖酶抑制蛋白对木聚糖酶应用领域的影响. 动物营养学报, 23 (3): 381-386, 2011.
[35] 王小菊, 何春平, 王震, 邢传宏, 宋安东, 陈红歌*. 高效硝化细菌的筛选及特性研究. 中国环境科学, 33(2): 286-292, 2013.
[36] 王彩澜, 刘新育, 李学琴, 刘亮伟, 陈红歌*. 酸性α-淀粉酶基因在枯草芽孢杆菌中的高效表达. 食品与发酵工业, 5: 52-55, 2012.
[37] 陈红歌,刘艳芳,刘亮伟,贾新成.木聚糖酶和木聚糖酶抑制蛋白在植物-病原菌互作中的作用,植物生理学通讯,45 (2): 176-182, 2009.
[38] 陈红歌,李岳桦,杨国宇. 双歧杆菌属特征性酶f6ppk测定条件的优化. 微生物学杂志. 28(5): 25-28, 2008.
[39] 王明道,魏照辉,张俊丽,刘亮伟,陈红歌*. 小麦不同生育时期木聚糖酶活性及木聚糖酶抑制蛋白活性的变化.麦类作物学报, 30 (3):544-547, 2010.
[40] 张勇伟,胡虹,刘亮伟,陈红歌*. 木聚糖酶热稳定性化学修饰研究. 食品与发酵工业, 37 (5): 61-65, 2011.
[41] 鲁玮, 岳冬冬, 刘新育, 陈红歌*. 黑曲霉β-葡萄糖苷酶的纯化及对中药糖苷类成分的转化.中国医药工业杂志, 45(3): 220-223, 2014.
[42] 王彩阁, 刘亮伟, 王明道, 宋安东, 陈红歌*. 以玉米芯为原料酶法制备木糖条件的研究. 安全与环境学报, 10 (2): 65-68, 2010.
[43] 刘新育, 王一凡, 王明道, 陈红歌*. 热击对黑曲霉孢子萌发及产木聚糖酶的影响. 食品与发酵工业, 39(11): 44-48, 2013.
[44] 刘新育, 靖梅贞, 宋安东, 刘亮伟, 陈红歌*. 斜卧青霉纤维素酶和木聚糖酶高产菌株的选育. 微生物学杂志, 30(3): 59-62, 2010.
[45] 岳冬冬, 刘新育, 徐新慧, 王明道, 王彩澜, 陈红歌*. β-葡萄糖苷酶高产菌株的筛选及其性质研究. 河南农业大学学报, 46(2): 173-176, 181, 2012.
[46] 张俊丽,张亚坤,刘新育,王明道,刘亮伟,陈红歌*. 不同谷物籽粒木聚糖酶抑制蛋白活性的分布特征. 华北农学报, 28(1): 140-143, 2013.
[47] 谢慧玲, 阮森林, 刘亮伟, 陈红歌*. 酸性生淀粉酶产生菌的筛选及酶学性质研究. 食品工业科技, 29(10): 85-87, 2008.
著作:
[1]《酶制剂工艺学》,化学工业出版社,普通高等教育“十一五”规划教材,2008年7月,主编.
[2]《基因工程原理与实验指导》,中国轻工业出版社,2010年9月,主编.